Manufacturing Cell Design with Reduction in Setup Time through Genetic Algorithm

نویسندگان

  • M. MURUGAN
  • V. SELLADURAI
چکیده

Cellular manufacturing emerged as a production strategy capable of solving the problems of complexity and long manufacturing lead times in batch production. The fundamental problem in cellular manufacturing is the formation of product families and machine cells. This paper presents a new approach for obtaining simultaneous arrangement of part families and machine cells for cellular manufacturing systems. The main feature of the proposed method is, the relevant production data such as process sequences and setup times are taken in to account. It has the ability to select the best solution among the solutions of compactness, group technology efficiency and reducing setup time efficiency for each part before attempting to cluster the machines and parts. The formation of part family and machine cell has been treated as a maximization problem according to a defined performance measure ‘β’. A genetic algorithm has been developed for solving the cell formation problem considering the reduction in setup time. The validation has been done based on a real time manufacturing data. This algorithm is written in the ‘C’ language on Intel Pentium / PIII compatible system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Part-level Sequence Dependent Setup Time Reduction in CMS

This paper presents the idea of creating cells while reducing part-level sequence-dependent setup time in general cellular manufacturing systems (CMS). Setup time reduction in CMS has gained modest attention in the literature. This could be attributed to the fact that the fundamental problem in cell formation in CMS has been mainly related to material handling and machine utilization while setu...

متن کامل

Design of a New Mathematical Model for Integrated Dynamic Cellular Manufacturing Systems and Production Planning

This paper presents a new mathematical model for integrated dynamic cellular manufacturing systems and production planning that minimizes machine purchasing, intra-cell material handling, cell reconfiguration and setup costs. The presented model forms the manufacturing cells and determines the quantity of machine and movements  during each period of time. This problem is NP-hard, so a meta-heur...

متن کامل

Meta heuristic for Minimizing Makespan in a Flow-line Manufacturing Cell with Sequence Dependent Family Setup Times

This paper presents a new mathematical model for the problem of scheduling part families and jobs within each part family in a flow line manufacturing cell where the setup times for each family are sequence dependent and it is desired to minimize the maximum completion time of the last job on the last machine (makespan) while processing parts (jobs) in each family together. Gaining an optimal s...

متن کامل

Role of batch size in scheduling optimization of flexible manufacturing system using genetic algorithm

Flexible manufacturing system (FMS) readily addresses the dynamic needs of the customers in terms of variety and quality. At present, there is a need to produce a wide range of quality products in limited time span. On-time delivery of customers’ orders is critical in make-to-order (MTO) manufacturing systems. The completion time of the orders depends on several factors including arrival rate, ...

متن کامل

A HYBRID GENETIC ALGORITHM FOR A BI-OBJECTIVE SCHEDULING PROBLEM IN A FLEXIBLE MANUFACTURING CELL

 This paper considers a bi-objective scheduling problem in a flexible manufacturing cell (FMC) which minimizes the maximum completion time (i.e., makespan) and maximum tardiness simultaneously. A new mathematical model is considered to reflect all aspect of the manufacturing cell. This type of scheduling problem is known to be NP-hard. To cope with the complexity of such a hard problem, a genet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007